高二数学: 上学期上册  下学期下册

高二数学试题

 已知椭圆C()的左、右焦点分别为F1F2,以F1F2为直径的圆与直线相切.

1)求椭圆C的离心率;

  2如图,过F1作直线l与椭圆分别交于PQ两点,若PQF2的周长为,求的最大值.

已知x>0y>0xaby成等差数列,xcdy成等比数列,则的最小值__________

 ABC 若其面积 S =(a2 + b2 - c2)C =(     )

A.              B.             C.                D.

已知函数

(Ⅰ)当时,如果函数仅有一个零点,求实数的取值范围;

(Ⅱ)当时,试比较的大小;

(Ⅲ)求证:).

i为虚数单位,则复数(1+i2=(  )

A0    B2    C2i   D2+2i

为虚数单位,为实数),则             

已知是椭圆的两个焦点,为椭圆上一点,且.若的面积为9,则_____

是“函数的最小正周期为(  )

A.充要条件     B.必要不充分条件   C.充分不必要条件   D.既不充分也不必要条件

如图,从椭圆上一点轴作垂线,垂足恰为左焦点,又点是椭圆与轴正半轴的交点,点是椭圆与轴正半轴的交点,且,

(Ⅰ)求的方程;

(Ⅱ)过且斜率不为的直线相交于两点,线段的中点为,直线直线相交于点,若为等腰直角三角形,的方程.

已知复数,若

⑴求    ⑵求实数的值

不等式  的解集是 ,则  的值等于(  

A14         B14           C10          D10 

近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别设置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):

“厨余垃圾”箱

“可回收垃圾”箱

“有害垃圾”箱

“其他垃圾”箱

厨余垃圾

24

4

1

2

可回收垃圾

4

19

2

3

有害垃圾

2

2

14

1

其他垃圾

1

5

3

13

()试估计“可回收垃圾”投放正确的概率;

(Ⅱ)试估计生活垃圾投放错误的概率.

一组数据的平均数是3.8,方差是0.96,若将这组数据中的每一个数据都乘以10再加1,得到一组新数据,则所得新数据的平均数和方差分别是(  

A.39 96          B. 38 , 96         C. 39 , 9.6          D.38 , 9.6

将一骰子抛掷两次,所得向上点数分别为,则函数上为增函数的概率是(     

A                B               C               D

已知函数

(1)若函数在定义域内单调递增,求的取值范围;

(2)且关于的方程上恰有两个不相等的实数根,求实数的取值范围;

的展开式中,二项式系数最大的项的值等于,则实数的值为    .

,两数的等比中项为   

A.       B.2     C.         D. 4

 已知椭圆的一个顶点为离心率为.直线与椭圆交于不同的两点

1)求椭圆的方程

2)当的面积为,的值

如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是(  

A.三棱锥    B.四棱锥      C.三棱柱      D.四棱柱

最近更新