九年级(初三)数学下学期下册试题

若一个几何体的三种视图如图所示,则该几何体是(    )

A . 正方体 B . 圆柱体 C . 圆锥体 D . 球体
如图是某几何体的三视图,该几何体是(   )

A . 三棱柱 B . 三棱锥 C . 圆柱 D . 圆锥
已知:如图,是一几何体的三视图,则该几何体的名称为(   )

A . 长方体 B . 正三棱柱 C . 圆锥 D . 圆柱
下列说法对吗?

(1)分别在△ABC的边AB,AC上取点D,E,使DE∥BC,那么△ADE是△ABC缩小后的图形.

(2)分别在△ABC的边AB,AC的延长线上取点D,E,使DE∥BC,那么△ADE是△ABC放大后的图形.

(3)分别在△ABC的边AB,AC的反向延长线上取D,E,使DE∥BC,那么△ADE是△ABC放大后的图形.

已知圆柱的侧面积是10πcm2 , 若圆柱底面半径为rcm,高为hcm,则h与r的函数关系式是  

在Rt△ABC中,∠ACB=90°,点D在边AC上,DE⊥B于点E,连CE.

  1. (1)

    如图1,已知AC=BC,AD=2CD,

    ①△ADE与△ABC面积之比;

    ②求tan∠ECB的值;

  2. (2)

    如图2,已知 = =k,求tan∠ECB的值(用含k的代数式表示).

如图,在Rt△ABC中,∠C=90°,BC=4,AC=3,CD⊥AB于D,设∠ACD=α,则cosα的值为(   )

A . B . C . D .
某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.
  1. (1) 求AB的长(结果保留根号);
  2. (2) 已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.

如图,小明在A时测得某树的影长为 ,B时又测得该树的影长为 ,若两次日照的光线互相垂直,则树的高度为m.

在某一时刻,操场上有三根测杆,如图所示,其中测杆AB的影子为BC,你能画出测杆MN的影子NP吗?若测杆XY的影子的顶端恰好落在点B处,且XY=MN,你能找出XY所在的位置吗?请将上述问题画在下面的示意图中,并简述画法.

如图1,等腰△ABC中,AC=BC,点O在AB边上,以O为圆心的圆经过点C,交AB边于点D,EF为⊙O的直径,EF⊥BC于点G,且D是 的中点.

  1. (1) 求证:AC是⊙O的切线;
  2. (2) 如图2,延长CB交⊙O于点H,连接HD交OE于点P,连接CF,求证:CF=DO+OP;
  3. (3) 在(2)的条件下,连接CD,若tan∠HDC= ,CG=4,求OP的长.
小虎同学在计算a+2cos60°时,因为粗心把“+”看成“﹣”,结果得2006,那么计算a+2cos60°的正确结果应为 

已知:如图,直角梯形 中, ,点E在边 上,点F在对角线 上,且

图片_x0020_100023

  1. (1) 求证:
  2. (2) 当点E、F分别是边 的中点时,求证:
如图①,是一个每条棱长均相等的三棱锥,图②是它的主视图、左视图与俯视图.若边AB的长度为a,则在这三种视图的所有线段中,长度为a的线段条数是(   )

A . 12条 B . 9条 C . 6条 D . 5条

如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x的取值范围是(  )

A . 0<x<2 B . x>2 C . x>2或-2<x<0 D . x<-2或0<x<2
如图,在矩形ABCD中,以点A为圆心,AD的长为半径画弧,交AB于点E,取BC的中点F,过点F作一直线与AB平行,且交弧DE于点G,则∠AGF的度数为         ( )
 

A . 110° B . 120° C . 135° D . 150°
我们知道良好的坐姿有利于青少年骨骼生长,有利于身体健康,那么首先要有正确的写字坐姿,身子上半部坐直,头部端正、目视前方,两手放在桌面上,两腿平放,胸膛挺起,理想状态下,如图1所示,将图1中的眼睛记为点A,腹记为点B,笔尖记为点D,且BD与桌沿的交点记为点C

参考数据:sin53°≈0.80,cos53°≈0.60,.tan53°≈1.33,≈1.41,≈1.73)

  1. (1) 若∠ADB=53°,∠B=60°,求A到BD的距离及C、D两点间的距离(结果精确到1cm).
  2. (2) 老师发现小红同学写字姿势不正确,眼睛倾斜至图2的点E,点E正好在CD的垂直平分线上,且∠BDE=60°,于是要求其纠正为正确的姿势.求眼睛所在的位置应上升的距离.(结果精确到1cm)
如图,该几何体的主视图是(  )


A . B . C . D .
如图,是矗立在高速公路水平地面上的交通牌,经测量得到如下数据:米,米, , 则警示牌的高CD为米.(结果精确到0.1.参考数据:

在下面的正方形网格中,每个小正方形的边长为1个单位,△ABC是格点三角形(顶点在网格交点处),请你画出:

  1. (1) △ABC的中心对称图形△A1B1C1 , A点为对称中心;
  2. (2) △ABC关于点P的位似△A'B'C',且位似比为1:2;
  3. (3) 找出以A、B、C、D为顶点的所有格点平行四边形ABCD的顶点D。