题目
在Rt△ABC中,∠ACB=90°,点D在边AC上,DE⊥B于点E,连CE.
(1)
如图1,已知AC=BC,AD=2CD,①△ADE与△ABC面积之比;②求tan∠ECB的值;
(2)
如图2,已知 = =k,求tan∠ECB的值(用含k的代数式表示).
答案: 解:①作EH⊥AD于H,如图1,设CD=x,则AD=2x,AC=BC=3x,
∵AC=BC,∠ACB=90°,
∴△ACB为等腰直角三角形,
∴∠A=45°,
而DE⊥AB,
∴△ADE为等腰直角三角形,
∴AH=HDF=HE=x,
∴S△ADE=
1
2
•2x•x=x2,
∵S△ACB=
1
2
•3x•3x=
9
2
x2,
∴
S
△
A
D
E
S
△
A
C
B
=
x
2
9
2
x
2
=
2
9
;
②在Rt△CHE中,tan∠HEC=
C
H
H
E
=
2
x
x
=2,
∵HE∥BC,
∴∠BCE=∠HEC,
∴tan∠ECB=2;
解:作EH⊥AD于H,如图2,设CD=a,∵ BCAC = ADDC =k,∴AD=ak,BC=kAC,∴AC=(k+1)a,∴BC=(k2+k)a,∴AB= (k+1)2a2+(k2+k)2a2 =(k+1) k2+1 •a,∵DE⊥AE,∴∠AED=90°,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴ ADAB = AEAC ,即 ak(k+1)k2+1a = AE(k+1)a ,解得AE= akk2+1 ,∵HE∥BC,∴△AHE∽△ACB,∴ AHAC = HEBC = AEAB ,即 AH(k+1)a = HE(k2+k)a = akk2+1(k+1)k2+1a ,∴AH= akk2+1 ,HE= k2ak2+1 ,∴CH=AC﹣AH=(k+1)a﹣ akk2+1 = k3+k2+1k2+1 a,∴tan∠HEC= CHHE = k3+k2+1k2+1ak2ak2+1 = k3+k2+1k2 ,∵HE∥BC,∴∠BCE=∠HEC,∴tan∠ECB= k3+k2+1k2 .