题目

在Rt△ABC中,∠ACB=90°,点D在边AC上,DE⊥B于点E,连CE. (1) 如图1,已知AC=BC,AD=2CD,①△ADE与△ABC面积之比;②求tan∠ECB的值; (2) 如图2,已知 = =k,求tan∠ECB的值(用含k的代数式表示). 答案: 解:①作EH⊥AD于H,如图1,设CD=x,则AD=2x,AC=BC=3x, ∵AC=BC,∠ACB=90°, ∴△ACB为等腰直角三角形, ∴∠A=45°, 而DE⊥AB, ∴△ADE为等腰直角三角形, ∴AH=HDF=HE=x, ∴S△ADE= 1 2 •2x•x=x2, ∵S△ACB= 1 2 •3x•3x= 9 2 x2, ∴ S △ A D E S △ A C B = x 2 9 2 x 2 = 2 9 ; ②在Rt△CHE中,tan∠HEC= C H H E = 2 x x =2, ∵HE∥BC, ∴∠BCE=∠HEC, ∴tan∠ECB=2; 解:作EH⊥AD于H,如图2,设CD=a,∵ BCAC = ADDC =k,∴AD=ak,BC=kAC,∴AC=(k+1)a,∴BC=(k2+k)a,∴AB= (k+1)2a2+(k2+k)2a2 =(k+1) k2+1 •a,∵DE⊥AE,∴∠AED=90°,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴ ADAB = AEAC ,即 ak(k+1)k2+1a = AE(k+1)a ,解得AE= akk2+1 ,∵HE∥BC,∴△AHE∽△ACB,∴ AHAC = HEBC = AEAB ,即 AH(k+1)a = HE(k2+k)a = akk2+1(k+1)k2+1a ,∴AH= akk2+1 ,HE= k2ak2+1 ,∴CH=AC﹣AH=(k+1)a﹣ akk2+1 = k3+k2+1k2+1 a,∴tan∠HEC= CHHE = k3+k2+1k2+1ak2ak2+1 = k3+k2+1k2 ,∵HE∥BC,∴∠BCE=∠HEC,∴tan∠ECB= k3+k2+1k2 .
数学 试题推荐