分层抽样方法 知识点题库

某质量监督局要对某厂6月份生产的三种型号的轿车进行抽检,已知6月份该厂共生产甲种轿车1 400辆,乙种轿车6 000辆,丙种轿车2 000辆,现采用分层抽样的方法抽取47辆进行检验,则这三种型号的轿车依次应抽取

A . 14辆,21辆,12辆 B . 7辆,30辆,10辆 C . 10辆,20辆,17辆 D . 8辆,21辆,18辆
某地区高中分三类,A类学校共有学生2000人,B类学校共有学生3000人,C类学校共有学生4000人,若采取分层抽样的方法抽取900人,则A类学校中应抽学生人数是(   )
A . 300 B . 200 C . 150 D . 100
某初级中学有三个年级,各年级男、女人数如下表:


初一年级

初二年级

初三年级

女生

370

              

200

男生

380

370

300

已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.

  1. (1) 求 的值;
  2. (2) 用分层抽样的方法在初三年级中抽取一个容量为5的样本,求该样本中女生的人数;
  3. (3) 用随机抽样的方法从初二年级女生中选出8人,测量它们的左眼视力,结果如下:1.2,1.5,1.2,1.5,1.5,1.3,1.0,1.2.把这8人的左眼视力看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.1的概率.
某单位青年、中年、老年职员的人数之比为10∶8∶7,从中抽取200名职员作为样本,若每人被抽取的概率是0.2,则该单位青年职员的人数为.
某校举行汉字听写比赛,为了了解本次比赛成绩情况,从得分不低于50分的试卷中随机抽取100名学生的成绩(得分均为整数,满分100分)进行统计,请根据频率分布表中所提供的数据,解答下列问题:

图片_x0020_100010

  1. (1) 求 的值;
  2. (2) 若从成绩较好的第3、4、5组中按分层抽样的方法抽取6人参加市汉字听写比赛,并从中选出2人做种子选手,求2人中至少有1人是第4组的概率.
某学校高一、高二、高三年级的学生人数成等差数列,现用分层抽样的方法从这三个年级中抽取90人,则应从高二年级抽取的学生人数为.
某公司在甲、乙、丙、丁四个地区分别有150,120,180,150个销售点.公司为了调查产品销售情况,需从这600个销售点中抽取一个容量为100的样本.记这项调查为①;在丙地区有20个大型销售点,要从中抽取7个调查其销售收入和售后服务等情况,记这项调查为②,则完成①,②这两项调查宜采用的抽样方法依次是(  )
A . 分层抽样法,系统抽样法 B . 分层抽样法,简单随机抽样法 C . 系统抽样法,分层抽样法 D . 简单随机抽样法,分层抽样法
保险公司新推出A,B,C三款不同的储蓄型保险,已知购买这三款保险的人数分别为600、400、300,公司为增加投保人数,现采用分层抽样的方法抽取26人进行红包奖励,则从购买C款保险的人中抽取的人数为(   )
A . 6 B . 8 C . 10 D . 12
环保部门要对所有的新车模型进行广泛测试,以确定它的行车里程的等级,右表是对 100 辆新车模型在一个耗油单位内行车里程(单位:公里)的测试结果.

(Ⅰ)做出上述测试结果的频率分布直方图,并指出其中位数落在哪一组;

(Ⅱ)用分层抽样的方法从行车里程在区间[38,40)与[40,42)的新车模型中任取5辆,并从这5辆中随机抽取2辆,求其中恰有一个新车模型行车里程在[40,42)内的概率.

万众瞩目的第14届全国冬季运动运会(简称“十四冬”)于2020年2月16日在呼伦贝尔市盛大开幕,期间正值我市学校放寒假,寒假结束后,某校工会对全校100名教职工在“十四冬”期间每天收看比赛转播的时间作了一次调查,得到如图频数分布直方图:

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

  1. (1) 若将每天收看比赛转播时间不低于3小时的教职工定义为“冰雪迷”,否则定义为“非冰雪迷”,请根据频率分布直方图补全 列联表;并判断能否有 的把握认为该校教职工是否为“冰雪迷”与“性别”有关;
  2. (2) 在全校“冰雪迷”中按性别分层抽样抽取6名,再从这6名“冰雪迷”中选取2名作冰雪运动知识讲座.记其中女职工的人数为 ,求的 分布列与数学期望.
某校高一年级有男生540人,女生360人,用分层抽样的方法从高一年级的学生中随机抽取25名学生进行问卷调查,则应抽取的女生人数为(   )
A . 5 B . 10 C . 4 D . 20
某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件,为了了解它们的产品质量是否存在显著差异,用分层抽样的方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n =.
某校在高一、高二、高三三个年级中招募志愿者50人,现用分层抽样的方法分配三个年级的志愿者人数,已知高一、高二、高三年级的学生人数之比为4:3:3,则应从高三年级抽取名志愿者.
某校计划面向高一年级1 200名学生开设校本选修课程,为确保工作的顺利实施,先按性别进行分层抽样,抽取了180名学生对社会科学类、自然科学类这两大类校本选修课程进行选课意向调查,其中男生有105人.在这180名学生中选择社会科学类的男生、女生均为45人.

附: ,其中n=a+b+c+d.

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

  1. (1) 分别计算抽取的样本中男生、女生选择社会科学类的频率,并以统计的频率作为概率,估计实际选课中选择社会科学类的学生人数;
  2. (2) 依据抽取的180名学生的调查结果,完成以下2×2列联表.并判断能否在犯错误的概率不超过0.025的前提下认为科类的选择与性别有关?

    选择自然科学类

    选择社会科学类

    合计

    男生

    女生

    合计

某校有学生800人,其中女生有350人,为了解该校学生的体育锻炼情况,按男、女学生采用分层抽样法抽取容量为80的样本,则男生抽取的人数是(    )
A . 35 B . 40 C . 45 D . 60
为增强市民的环保意识,某市组织了一批年龄在 岁的志愿者为市民开展宣传活动.先从这批志愿者中随机抽取100名按年龄分组:第1组 ,第2组 ,第3组 ,第4组 ,第5组 ,各组人数的频率分布直方图如图所示.现从第3,4,5组中用分层抽样的方法抽取6名志愿者参加宣传活动.

图片_x0020_1128996542

  1. (1) 应从第3,4,5组中各抽取多少名志愿者?
  2. (2) 在这6名志愿者中随机抽取2名担任宣传活动负责人,求第3组至少有一名志愿者被抽中的概率.
某单位有甲、乙、丙三个部门,其员工人数分别为24,16,8,现在通过某项检查,采用分层抽样的方法从中抽取6人进行前期检查.
  1. (1) 求甲、乙、丙三个部门的员工中分别抽取的人数和每一位员工被抽到的概率?
  2. (2) 若所抽取的6人中恰有2人合格,4人不合格,现从这6人中再随机抽取2人检查,求至少有1人合格的概率.
海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.

地区

A

B

C

数量/件

50

150

100

  1. (1) 求这6件样品中来自A,B,C三个地区商品的数量;
  2. (2) 若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
一支田径队有男运动员45人,女运动员33人,按照性别进行分层,用分层随机抽样的方法从该田径队中抽取一个容量为26的样本,则女运动员被抽取的人数为
下列结论正确的是(   )
A . 某班有男生30人,女生20人,现用分层抽样的方法从其中抽10名同学进行体有健康测试,则应抽取男生6人 B . 某人将一枚质地均匀的硬币连续抛掷了10次,正而朝上的情形出现了6次,则正面朝上的概率为0.6 C . 一组数6,5,4,3,3,3,2,2,2,1的80%分位数为2 D . 某学员射击10次,命中环数如下:7,8,7,9,5,4,9,10,7,4.则命中环数的标准差为2