(Ⅰ)请在图中补全频率分布直方图;
(Ⅱ)若Q大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.
①若Q大学本次面试中有B、C、D三位考官,规定获得两位考官的认可即面试成功,且面试结果相互独立,已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为 、
,
,求甲同学面试成功的概率;
②若Q大学决定在这6名学生中随机抽取3名学生接受考官B的面试,第3组中有ξ名学生被考官B面试,求ξ的分布列和数学期望.
|
|
| |
优(个) | 28 | ||
良(个) | 32 | 30 |
已知在这180个数据中随机抽取一个,恰好抽到记录 城市空气质量为优的数据的概率为0.2.
(I)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在 城中应抽取的数据的个数;
(II)已知 ,
,求在
城中空气质量为优的天数大于空气质量为良的天数的概率.
一般 | 良好 | 优秀 | |
男生(人) | 18 | ||
女生(人) | 10 | 17 |
已知从这批学生中随机抽取1名学生,抽到成绩一般的男生的概率为0.15.
方案①:所有芒果以10元/千克收购;
方案②:对质量低于350克的芒果以3元/个收购,对质量高于或等于350克的芒果以5元/个收购.
请通过计算确定种植园选择哪种方案获利更多?