(Ⅰ)请在图中补全频率分布直方图;
(Ⅱ)若Q大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.
①若Q大学本次面试中有B、C、D三位考官,规定获得两位考官的认可即面试成功,且面试结果相互独立,已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为
、
,
,求甲同学面试成功的概率;
②若Q大学决定在这6名学生中随机抽取3名学生接受考官B的面试,第3组中有ξ名学生被考官B面试,求ξ的分布列和数学期望.

的学生进行某项调查,则两个班共抽取男生人数是.
、
、
三个城市同时进行了多天的空气质量监测,测得三个城市空气质量为优或良的数据共有180个,三城市各自空气质量为优或良的数据个数如下表所示:
|
|
| |
优(个) | 28 |
|
|
良(个) | 32 | 30 |
|
已知在这180个数据中随机抽取一个,恰好抽到记录
城市空气质量为优的数据的概率为0.2.
(I)现按城市用分层抽样的方法,从上述180个数据中抽取30个进行后续分析,求在
城中应抽取的数据的个数;
(II)已知
,
,求在
城中空气质量为优的天数大于空气质量为良的天数的概率.
一般 | 良好 | 优秀 | |
男生(人) |
| 18 |
|
女生(人) | 10 | 17 |
|
已知从这批学生中随机抽取1名学生,抽到成绩一般的男生的概率为0.15.
的值;
,优秀学生中男生不少于女生的概率.
内的人数为
,求
的分布列及数学期望.
的样本,已知从高中生中抽取70人,则
为.
分组,得到如图所示的频率分布直方图,若该工厂认定产品的质量指数不低于6为优良级产品,产品的质量指数在
内时为优等品.
,
,
,
,
(单位:克)中,经统计频率分布直方图如图所示.
,
中的芒果中随机抽取10个,再从这10个中随机抽取2个,求这2个芒果都来自同一个质量区间的概率;
方案①:所有芒果以10元/千克收购;
方案②:对质量低于350克的芒果以3元/个收购,对质量高于或等于350克的芒果以5元/个收购.
请通过计算确定种植园选择哪种方案获利更多?

、
、
三个年龄段的人数依次成等差数列,求a,b的值;
内的人群定义为高关注人群,其他年龄段的人群定义为次高关注人群,为了进一步了解其关注项目.现按“关注度的高低”采用分层抽样的方式从参与采访的100位关注者中抽取10人,并在这10人中随机抽取3人进行电视访谈,求此3人中来自高关注人群的人数X的分布列与数学期望.
、[90,100],统计结果如图所示: