九年级(初三)数学下学期下册试题

如图,已知关于x的函数y=k(x﹣1)和y= (k≠0),它们在同一坐标系内的图象大致是( )
A . B . C . D .
有一支夹子如图所示,AB=2BC,BD=2BE,在夹子前面有一个长方体硬物,厚PQ为6cm,如果想用夹子的尖端A、D两点夹住P、Q两点,那么手握的地方EC至少要张开cm.

一个几何体的三视图如图所示,则该几何体可能是(   )

A . B . C . D .
一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.

如图,某小区在规划改造期间,欲拆除小区广场边的一根电线杆AB,已知距电线杆AB水平距离14米处是观景台,即BD=14米,该观景台的坡面CD的坡角∠CDF的正切值为2,观景台的高CF为2米,在坡顶C处测得电线杆顶端A的仰角为30°,D、E之间是宽2米的人行道,如果以点B为圆心,以AB长为半径的圆形区域为危险区域.请你通过计算说明在拆除电线杆AB时,人行道是否在危险区域内?( ≈1.73)

已知点P是线段AB的黄金分割点,且PA>PB,若PA=2,AB=x,PB=y,则y与x之间的函数关系式为
如图,某游乐场一山顶滑梯的高为 ,滑梯的坡角为 ,那么滑梯长 为( )

A . B . C . D .
如图,在△ABC中,AD是BC上的高,tan∠B=cos∠DAC,

(1)求证:AC=BD;

(2)若sinC= , BC=36,求AD的长.

有x个小朋友平均分20个苹果,每人分得的苹果y(每人每个)与x(个)之间的函数关系式为.
如图,在△ABC中,AB=3,D是AB上的一点(不与点A、B重合),DE∥BC,交AC于点E,则 的最大值为.

图片_x0020_100012

如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据: 米, 米, ,则 的长为米.(结果保留根号)

一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为(   )

A . 6 B . 8 C . 12 D . 24
下列四个几何体:

_x0000_i1074

其中左视图与俯视图相同的几何体共有(  )

A . 1个 B . 2个 C . 3个 D . 4个
如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为.(杆的宽度忽略不计)

已知圆锥的母线长为6,侧面积为12 ,则圆锥的半径长为.
下面四组线段中,成比例的是(     )
A . a = 2, b = 3, c = 4, d = 5 B . a = 1, b = 2, c = 2, d = 4 C . a = 4, b = 6, c = 5 d = 10 D . a = , b = , c = 3, d =
一个正方体的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示.

  1. (1) A的对面是,B的对面是,C的对面是;(直接用字母表示)
  2. (2) 若A=﹣2,B=|m﹣3|,C=m﹣3n﹣ , E=(+n)2 , 且小正方体各对面上的两个数都互为相反数,请求出F所表示的数.
某个几何体的主视图、左视图、俯视图分别为长方形、长方形、圆,则该几何体是(   )
A . 圆柱 B . 长方体 C . 圆锥 D . 四棱锥
如图,折叠矩形纸片ABCD时,进行如下操作:①把△BCE翻折使点B落在DC边上的点F处,折痕为CE , 点EAB边上;②把纸片展开并铺平;③把△CDH翻折使点D落在线段AE上的点G处,折痕为CH , 点HAD边上.若 BC=6,则EG的长为