如图是一个正三棱柱体的三视图,该柱体的体积等于( )
①M={(x,y)|y= };②M={(x,y)|y=sinx};③M={(x,y)|y=ex﹣2};
④M={(x,y)|y=lgx}.
其中所有“理想集合”的序号是( )
如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.
(1)证明:l⊥平面PDC;
(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.
如图:多面体中,三角形
是边长为4的正三角形,
,
平面
,
.
(1)若是
的中点,求证:
;
(2)求平面与平面
所成的角的余弦值.
已知函数.
(Ⅰ)求函数的最小正周期和值域;
(Ⅱ)若为第二象限角,且
,求
的值.
如图在区域Ω={(x,y)|-2≤x≤2,0≤y≤4}中随机撒900粒豆子,如果落在每个区域的豆子数与这个区域的面积近似成正比,试估计落在图中阴影部分的豆子数.
如果小明在某一周的第一天和第七天分别吃了3个水果,且从这周的第二天开始,每天所吃水果的个数与前一天相比,仅存在三种可能:或“多一个”或“持平”或“少一个”,那么,小明在这一周中每天所吃水果个数的不同选择方案共有
A.50种 B.51种 C.140种 D.141种
已知,
,
,则( )
A. B.
C.
D.
判断并证明函数在(0,2]内的单调性,并求其值域。
如图,A,C是函数y=的图像上任意两点,过点A作y轴的垂线,垂足为B,过点C作y轴的垂线,垂足为D,记Rt△AOB的面积为S1,Rt△COD的面积为S2,则( ).
A、 B、
C、 D、
的大小关系不能确定