高中数学: 高一 高二 高三 高考 

高中 数学

设点P到点(﹣1,0)、(1,0)距离之差为2m,到x、y轴的距离之比为2,求m的取值范围

已知椭圆C1和双曲线C2焦点相同,且离心率互为倒数,F1 , F2它们的公共焦点,P是椭圆和双曲线在第一象限的交点,当∠F1PF2=60°时,则椭圆C1的离心率为(  )

A . B . C . D .
中,内角 的对边分别为 ,且 .

(Ⅰ)求角 的大小;

(Ⅱ)若 的面积为 ,求 的值.

命题“∃x∈R,ex>x”的否定是 .

若不等式x2﹣ax+b<0的解集为(1,2),则不等式 的解集为(   )
A . ,+∞) B . (﹣∞,0)∪( ,+∞) C . ,+∞) D . (﹣∞,0)∪( ,+∞)
若点P(sinα,tanα)在第三象限,则角α是(   )
A . 第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角
已知函数
  1. (1) 讨论函数 的单调性;
  2. (2) 若 恒成立,求实数 的取值范围.
设x,y满足约束条件 , 若目标函数z=ax+by(a>0, b>0)的最大值为8,点P为曲线上动点,则点P到点(a,b)的最小距离为(    )

A . B . 0 C . D . 1
已知非空集合S={x|﹣≤x≤m}满足:当k∈S时,有x2∈S,则实数m的取值范围是 

已知集合 ,则 (   )
A . B . C . D .
已知
  1. (1) 若 , 求的最小值;
  2. (2) 当时, , 求a的取值范围
过双曲线的左焦点F作圆的两条切线,切点分别为A、B,双曲线左顶点为M,若 , 则该双曲线的离心率为 (  )

A . B . C . 3 D . 2
由与圆心距离相等的两条弦长相等,想到与球心距离相等的两个截面圆的面积相等,用的是(   )
A . 三段论推理 B . 类比推理 C . 归纳推理 D . 传递性关系推理
向量经矩阵变化后得到的矩阵为 .

,将 表示成指数幂的形式,其结果是(    )
A . B . C . D .

复数满足,则在复平面内复数所对应的点位于

A第一象限                            B第二象限

C第三象限                            D第四象限

根据统计,某机械零件加工厂的一名工人组装第)件产品所用的时间(单位:分钟)为为常数).已知该工人组装第件产品用时小时.

1)求的值;

2)试问该工人组装第件产品比组装第件产品少用多少时间?

等腰三角形一腰上的高是,这条高与底边的夹角为,则底边长=   

A2         B          C3        D

已知为虚数单位),则为纯虚数的 ()

A.充分不必要条件                   B.必要不充分条件 

C.充分必要条件                     D.既不充分也不必要条件

如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则xy的值分别为(   )

A. 3,5    B. 5,5    C. 3,7    D. 5,7

最近更新