已知某四棱锥的三视图,如图。则此四棱锥的体积为( )
A.(不等式选讲)已知函数.若关于x的不等式
的解集是R,则m的取值范围是
已知函数是定义在
上的奇函数,且
,
(1)确定函数的解析式;
(2)用定义证明在
上是增函数;
(3)解关于的不等式
.
log216+2log36-log312.
环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准:
空气污染指数 | (0,50] | (50,100] | (100,150] | (150,200] | (200,300] | (300,+∞) |
空气质量等级 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.
(1)求频率分布直方图中m的值;
(2)若按分层抽样的方法,从空气质量等级为良与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;
(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
天数 | 11 | 27 | 11 | 7 | 3 | 1 |
根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.
| 空气质量优、良 | 空气质量污染 | 总计 |
限行前 | |||
限行后 | |||
总计 |
参考数据:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
参考公式:其中
.
(1)已知函数f(x)为二次函数,且f(x–1)+f(x)=2x2+4,求f(x)的解析式;
(2)已知f(x)满足,求f(x)的解析式.
在△ABC中,若则A=( )
A. B.
C.
D.