(Ⅰ)求 的轨迹
的方程.
(Ⅱ)过点 的直线
与
交于
两点,且
,求直线
的方程.
如图,平行四边形ABCD中, , 点M在AB边上,且
, 则
等于 ( )
对于n∈N*,将n表示为n=a0×2k+a1×2k﹣1+a2×2k﹣2+…+ak﹣1×21+ak×20,当i=0时,a1=1,当1≤i≤k时,a1为0或1,记I(n)为上述表示中,a1为0的个数,例如5=1×22+0×21+1×20,故I(5)=1,则I(65)=______.
已知椭圆的焦点在
轴上,离心率为
,对称轴为坐标轴,且经过点
.
(1)求椭圆的方程;
(2)直线与椭圆
相交于
、
两点,
为原点,在
、
上分别存在异于
点的点
、
,使得
在以
为直径的圆外,求直线斜率
的取值范围.
如果函数f(x)=x2+bx+c对任意的x都有f(x+1)=f(-x),那么( )
A.f(-2)<f(0)<f(2) B.f(0)<f(-2)<f(2)
C.f(2)<f(0)<f(-2) D.f(0)<f(2)<f(-2)
函数有( )
A.极大值5,极小值-27 B.极大值5,极小值-11
C.极大值5,无极小值 D.极小值-27,无极大值
下列命题中是全称命题的是 ( ).
A.圆有内接四边形 B.>
C.
<
D.若三角形的三边长分别为3、4、5,则这个三角形为直角三角形