如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC的中点恰好与D点重合,AB交CD于点E.若AB=6,则△AEC的面积为( )
如图,正△ABO的边长为2,O为坐标原点,A在 轴上,B在第二象限。△ABO沿
轴正方向作无滑动的翻滚,经第一次翻滚后得△A1B1O,则翻滚3次后点B的对应点的坐标是;翻滚2017次后AB中点M经过的路径长为.
实验与探究
①在下列三个图中,给出菱形ABCD的顶点A,B,D的坐标(如图所示),写出图(1),(2),(3)中点C的坐标,它们分别是、、;
②菱形绕原点逆时针依照(90°,2)旋转后点C对应的点C1的坐标分别是、、.(其中(90°,2)表示旋转90°,长度扩大2倍)
①在图4中,给出菱形ABCD的顶点A,B,D的坐标,求出顶点C的坐标;(点C的坐标用含a,b,c,d,e,f的代数式表示)
②菱形绕原点逆时针依照(90°,2)旋转后对应的C1的坐标为多少.
①通过对图(1),(2),(3),(4)的观察和顶点C的坐标的探究,你会发现:无论菱形ABCD处于直角坐标系的哪个位置,当顶点坐标为:A(a,b),B(c,d),C(m,n),D(e,f)时,四个顶点的横坐标a,c,m,e之间的等量关系为;纵坐标b,d,n,f之间的等量关系为(不必证明);
②通过顶点C的坐标和旋转后的C1的坐标探究,你会发现无论C点在哪个位置,绕原点逆时针依照(90°,n)旋转,设C(x1 , y1),C1(x2 , y2),则x1 , x2 , y1 , y2满足的等式是(不必证明).
(备注:有两点A(x1 , y1),B(x2 , y2),则它们的中点P的坐标为( ,
))
小颖同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小颖同学的思路,探究并解决下列问题:
①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正确结论的个数是( )
⑴将△ABC以点C为旋转中心旋转180°,得到△A1B1C , 请画出△A1B1C .
⑵平移△ABC , 使点A的对应点A2坐标为(﹣3,﹣4),请画出平移后对应的△A2B2C2 .
⑶若将△A1B1C绕某一点旋转可得到△A2B2C2 , 请直接写出旋转中心的坐标.
⑴画出 , 直接写出点
,
的坐标;
⑵计算在旋转过程中,所扫过的面积.
⑶以原点为位似中心,位似比为2,在第三象限画出
放大后的
.