八年级(初二)数学: 上学期上册  下学期下册

八年级(初二)数学试题

如图, 于点E, 于点D, ,则 的长是(   )

图片_x0020_100013

A . 8 B . 4 C . 3 D . 2
货车和轿车分别沿同一路线从A地出发去B地,已知货车先出发10分钟后,轿车才出发,当轿车追上货车5分钟后,轿车发生了故障,花了20分钟修好车后,轿车按原来速度的继续前进,在整个行驶过程中,货车和轿车均保持各自的速度匀速前进,两车相距的路程y(米)与货车出发的时间x(分钟)之间的关系的部分图象如图所示,对于以下说法:①货车的速度为1500米/分;②;③点D的坐标为;④图中a的值是 , 其中正确的结论有(  )个

A . 1 B . 2 C . 3 D . 4
如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:

平均数(cm)

185

180

185

180

方差

3.6

3.6

7.4

8.1

根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择(   )

A . B . C . D .
已知函数y=ax+b和y=kx的图象交于点P,则根据图象可知,关于x,y的二元一次方程组 的解是

阅读、理解、应用.

例:计算:

解:设 , 则原式

请你利用上述方法解答下列问题:

  1. (1) 计算:
  2. (2) 若 , 请比较M,N的大小;
  3. (3) 计算:

如图,△ABC的面积为16,点D是BC边上一点,且BD= BC,点G是AB上一点,点H在△ABC内部,且四边形BDHG是平行四边形,则图中阴影部分的面积是(  )

A . 3 B . 4 C . 5 D . 6
如图,△ABC≌△DEF,若∠A=65° ,则∠EDC的度数为.

计算:(x-y)(x2+xy+y2)=
如图,四边形 内接于 的直径,

  1. (1) 试判断 的形状,并给出证明;
  2. (2) 若 ,求 的长度.
无论a取何值,点P(a-1,2a-3)都在直线l上,若点Q(m,n)在直线l上,则(2m-n+3)2的值为
如图所示,直线y=x+2与两坐标轴分别交于A、B两点,点C是OB的中点,D、E分别是直线AB、y轴上的动点,当△CDE周长最小时,点D的坐标为

图片_x0020_100011

如图,已知双曲线y= 与直角三角形OAB的斜边OB相交于D,与直角边AB相交于C. 若BC:CA=2:1,△OAB的面积为8,则△OED的面积为如图,已知双曲线y= 与直角三角形OAB的斜边OB相交于D,与直角边AB相交于C. 若BC:CA=2:1,△OAB的面积为8,则△OED的面积为(   )

A . B . 2 C . D . 4
篮球队5名场上队员的身高(单位:cm)分别是:189,191,193,195,196.现用一名身高为192cm的队员换下身高为196cm的队员,与换人前相比,场上队员的身高(       )
A . 平均数变小,方差变小 B . 平均数变小,方差变大 C . 平均数变大,方差变小 D . 平均数变大,方差变大
如图,在△ABC中,AB=AC,D为边BC上一点,以AB、BD为邻边作平行四边形ABDE,连接AD、EC.若BD=CD,求证:四边形ADCE是矩形.

在如图的计算程序中,y与x之间的函数关系所对应的图象大致是(    )

A . B . C . D .
某商店打算以40元/千克的价格购进一批商品,经市场调查发现,该商品的销售量 (千克)与售价 (元)之间的关系如下表:

x

45

50

55

60

......

y

190

180

170

160

......

  1. (1) 求 关于 的函数关系式;
  2. (2) 若要控制成本不超过3200元的情况下,保证利润达到3200元,该如何定价?
如果用总长为60m的篱笆围成一个长方形场地,设长方形的面积为S(m2),周长为p(m),一边长为a(m),那么S,p,a中,常量是(   ).
A . a B . S C . p D . p,a
如图所示,点是菱形对角线的交点, , 连接 , 交于点.

  1. (1) 求证:四边形为矩形;
  2. (2) 作延长线于点 , 连接 , 如果OC:OB=1:2, , 求的长.