初中数学: 七年级 八年级 九年级 中考 

初中 数学

如图:点A、B、C、D在一条直线上,AB=CD,AE∥BF,CE∥DF.求证:AE=BF.

(﹣ 2的值为(   )
A . ﹣9 B . 9 C . ﹣6 D .
吨黄豆可榨油 吨,照这样计算,榨1吨油需要吨黄豆,1吨黄豆可榨油吨.
已知一次函数y=(m﹣1)x+m2﹣1的图象经过原点,那么m
如图,矩形ABCD的顶点A和对称中心均在反比例函数y= (k≠0,x>0)上,若矩形ABCD的面积为8,则k的值为

如图,在平面直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,边OC在y轴上.如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于OABC的面积的 , 则点B的对应点B′的坐标为(  )

 

A . (2,1)        B . (2,1)或(﹣2,﹣1) C . (1,2) D . (1,2)或(﹣1,﹣2)
,则 的乘积不可能是(   )
A . B . C . 0 D .
已知二次函数 的图象经过 两点,关于 的方程 有两个根,其中一个根是5.则关于 的方程 有两个整数根,这两个整数根是(    )
A . -2或4 B . -2或0 C . 0或4 D . -2或5
已知反比例函数 (k为常数,且k≠1)
  1. (1) 若点A(1,2)在这个函数的图象上,求k的值;
  2. (2) 若在这个函数图象的每一支上,y随x的增大而减小,求k的取值范围;
如图,点DE分别在线段ABAC上,BECD相交于点OAEAD

(Ⅰ)请你添加一个条件,使△ABE ≌△ACD , 这个条件可以是(写出一个即可);

(Ⅱ)证明你在(Ⅰ)中的结论.

几何并不复杂,生活中处处有几何.修高速的时候,通过修建高架桥和隧道,把地形复杂的两点之间的公路修成直道,用到的几何原理是
一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付给两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付给两组费用共3480元,问:

  1. (1) 甲、乙两组单独工作一天,商店应各付多少元?

  2. (2) 已知甲组单独完成需要12天,乙组单独完成需要24天,单独请哪组,商店应付费用较少?

  3. (3) 若装修完后,商店每天可盈利200元,你认为如何安排施工有利用商店经营?说说你的理由.(可以直接用(1)(2)中的已知条件)

如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)

  1. (1) ①请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1

    ②请画出△ABC关于原点O成中心对称的图形△A2B2C2

  2. (2) 在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
单项式 的系数为
如图1,P(2,2),点A在x轴正半轴上运动,点B在y轴负半轴上运动,且PA=PB.

  1. (1) 求证:PA⊥PB;
  2. (2) 若点A(8,0),求点B的坐标;
  3. (3) 求OA﹣OB的值;
  4. (4) 如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.

的整数部分为a,小数部分为b,求 的值.

如图,边长为1的小正方形构成的网格中,半径为1的圆心O在格点上,则∠AED的正切值等于_______________

下列说法正确的是:

Ax2+1是二次单项式                     B-a2的次数是2,系数是1

C-23ab的系数是-23                  D.数字0也是单项式

如图,在平面直角坐标系中有一正方形AOBC,反比例函数经过正方形AOBC对角线的交点,半径为()的圆内切于△ABC,则k的值为________

分解因式4x3x=____________.