如图,将导热性良好的薄壁圆筒开口向下竖直缓慢地放入水中,筒内封闭了一定质量的气体(可视为理想气体).当筒底与水面相平时,圆筒恰好静止在水中.此时水的温度t1=7.0℃,筒内气柱的长度h1=14cm.已知大气压强p0=1.0×105Pa,水的密度ρ=1.0×103kg/m3 , 重力加速度大小g取10m/s2 .
(i)若将水温缓慢升高至27℃,此时筒底露出水面的高度△h为多少?
(ii)若水温升至27℃后保持不变,用力将圆筒缓慢下移至某一位置,撤去该力后圆筒恰能静止,求此时筒底到水面的距离H(结果保留两位有效数字).
关于能源和能量,下列说法中正确的是
A.电磁波的传播过程是能量传递的过程
B.在电磁感应现象中,电能转化为机械能
C.自然界的能量是守恒的,但地球上的能源不会永不枯竭
D.能源的利用过程有能量耗散,表明能量在转化过程中不守恒
如图所示,绷紧的传送带与水平面间的夹角=30°,传送带在电动机的带动下,始终保持v =2m/s的速率运行. 现把一质量为m =10kg的工件(可看为质点)轻轻放在传送带的底端,经时间t=1.9s,工件被传送到h =1.5m的高处,取g =10m/s2求:
(1)工件与传送带间的动摩擦因数;
(2)电动机由于传送工件多消耗的电能.
太阳喷发大量高能带电粒子,这些粒子形成的“太阳风”接近地球时,假如没有地球磁场, “太阳风”就不会受到地磁场的作用发生偏转而直射地球。在这种高能粒子的轰击下,地球的大气成分可能不是现在的样子,生命将无法存在。地磁场的作用使得带电粒子不能径直到达地面,而是被“运到”地球的南北两极,南极光和北极光就是带电粒子进入大气层的踪迹。假设“太阳风”主要成分为质子,速度约为0.1C(C=)。近似认为地磁场在赤道上空为匀强环形磁场,平均强度为
,示意图如图所示。已知地球半径为
,质子电荷量
,质量
。如果“太阳风”在赤道平面内射向地球,太阳喷发高能带电粒子,这些粒子形成的太阳风接近地球时,假如:
(1)太阳风中质子的速度的方向任意,则地磁场厚度d为多少时才能保证所有粒子都不能到达地表?并画出与之对应的粒子在磁场中的轨迹图。(结果保留两位有效数字)
(2)太阳风中质子垂直地表指向地心方向入射,地磁场的厚度至少为多少才能使粒子不能到达地表?并画出与之对应的粒子在磁场中的轨迹图。(结果保留两位有效数字)(时,
)
(3)太阳风中粒子的入射方向和入射点与地心连线的夹角为α如图,0<α<90°,磁场厚度满足第(1)问中的要求为定值d。电子质量为me,电荷量为-e,则电子不能到达地表的最大速度和角度α的关系,并画出与之对应的粒子在磁场中的轨迹图。(图中磁场方向垂直纸面)
25.如图所示,B是质量为2m、半径为R的光滑半球形碗,放在光滑的水平桌面上。A是质量为m的细长直杆,光滑套管D被固定在竖直方向,A可以自由上下运动,物块C的质量为m,紧靠半球形碗放置。初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触(如图)。然后从静止开始释放A,A、B、C便开始运动,则长直杆的下端第一次运动到碗内的最低点时,B、C水平方向的速度为__________,在运动的过程中,长直杆的下端能上升到的最高点距离半球形碗内底部的高度是________。
(2013徐州上学期期中) 如图所示,质量为m的小球在竖直平面内的光滑圆轨道内侧做圆周运动。圆半径为R,小球经过轨道最高点时刚好不脱离轨道,则当其通过最高点时、
A.小球对轨道的压力大小等于mg
B.小球受到的向心力大小等于重力mg
C.小球的向心加速度大小小于g
D.小球的线速度大小等于
一质点做简谐运动的振动图象如图所示,质点在哪两段时间内的速度与加速度方向相反 ( )
A.0~0.3s和0.6~0.9s B.0.6~0.9s和0.9~1.2s
C.0~0.3s和0.9~1.2s D.0.3~0.6s和0.9~1.2s