某同学利用下述装置对轻质弹簧的弹性势能进行研究,一轻质弹簧放置在光滑水平桌面上,弹簧左端固定,右端与一小球接触不固连;弹簧处于原长时,小球恰好在桌面边缘,如图(a)所示。向左推小球,使弹簧压缩一段距离后由静止释放;小球离开桌面后落到水平地面,通过测量和计算,可求得弹簧被压缩后的弹性势能。 回答下列问题:
(1)本实验中可认为,弹簧被压缩后的弹性势能EP与小球抛出时的动能EK相等,已知重力加速度大小为g,为求得EK ,至少需要测量下列物理量中的_______(填正确答案标号)
A.小球的质量m B.小球抛出点到落地点的水平距离X
C.桌面到地面的高度h D.弹簧的压缩量△L
E.弹簧原长L0
(2)用所选取的测量量和已知量表示EK,得EK=_____________
(3)图(b)中的直线是实验测量得到的X-△L图线,从理论上可推出,如果h不变,m增加,X-△L图线的斜率会________(填“增大”、“减小”或“不变”);如果m不变,h增加,X-△L图线的斜率会________(填“增大”、“减小”或“不变”)。由图(b)中给出的直线关系和EK的表达式可知,EP与△L的_______次方成正比。
如图所示,将质量为m的小球以速度由地面竖直向上抛出。小球落回地面时,其速度大小为
。设小球在运动过程中受空气阻力的大小不变,则空气阻力的大小等于( )
A. B.
C.
D.
下列四个实验示意图中,能揭示光的粒子性的是( )
半径为r、电阻为R的n匝圆形线圈在边长为l的正方形abcd外,匀强磁场充满并垂直穿过该正方形区域,如图甲所示.磁场随时间的变化规律如图乙所示. 图线与横、纵轴的截距分别为t0和B0.
求:(1)穿过圆形线圈磁通量的变化率;
(2)t0时刻线圈产生的感应电流大小;
(3)0至t0时间内通过的电荷量q.
某同学利用单摆周期公式测定重力加速度。
(1)该同学用游标卡尺测量摆球的直径,其读数如图所示,某次测量中该同学又测得摆线长度为42.22cm,则该次实验中单摆的摆长为L=____________cm。(结果保留两位小数)
(2)若该同学测得单摆进行n次全振动所花时间为t,则计算重力加速度的表达式为g=_________________。(用(1)(2)问中所给符号表达)
(3)若该同学在用上述方法测量的过程中,误将n-1次全振动当成了n次全振动,则用此方法计算出的重力加速度相对真实值将_____________。(填“偏大”、“偏小”或“不变”)
(4)如果另一位同学在做这个实验时没有测量摆球直径,仅仅测出了单摆的绳长l,他多次进行实验,测量了多组数据,描绘出了单摆摆动周期的平方T2随绳长l的关系,则右图中的_______(填“甲”、“乙”或“丙”)最有可能是他测得的图线。若图线的斜率为k,纵轴截距为b,则该同学用这种方法测量重力加速度的表达式应为____________。
某同学设计了一个用电磁打点计时器验证动量守恒定律的实验:在小车a的前端粘有橡皮泥,推动小车a使之做匀速运动,然后与原来静止在前方的小车b相碰并粘合成一体,继续做匀速运动,他设计的装置如图所示,在小车a后连着纸带,电磁打点计时器所用电源频率为,长木板下垫着小木片以平衡摩擦力。
(1)若已测得打点的纸带如图乙所示,并测得各计数点的间距(已标在图上),A为运动的起点,则应选 段来计算a碰撞前的速度,应选 段来计算a和b碰后的共同速度(以上两空选填“AB”、“BC”、“CD”、或“DE”)。
(2)已测得小车a的质量,小车b的质量
,则以上测量结果可得:碰前
,碰后
(结果保留三位有效数字)。
如图所示,光滑水平面AB=x,其右端B处连接一个半径为R的竖直光滑半圆轨道,C为最高点.质量为m可视为质点的小物块静止在A处,若用水平恒力将小物块推到B处后撤去该水平恒力,小物块将沿半圆轨道运动到C处并恰好抛落到A处.重力加速度为g,在整个运动过程中,求:
(1)小物块在C处的速度vc和水平恒力对小物块做的功.
(2)x与R满足什么关系时,水平恒力对小物块做功最小?并求出最小功.
公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板.一段时间内货物在竖直方向的振动可视为简谐运动,周期为T.取竖直向上为正方向,以某时刻作为计时起点,即t=0,其振动图象如图所示,则
A.t=T时,货物对车厢底板的压力最小
B.t=T时,货物对车厢底板的压力最小
C.t=T时,货物对车厢底板的压力最大
D.t=T时,货物对车厢底板的压力最大
正确读出下列测量结果:螺旋测微器的读数为 ( ) mm;游标卡尺的读数为( ) cm 。
如图所示,斜壁形物体的质量为M,放在水平地面上,质量为m的粗糙物块以某一初速沿斜劈的斜面向上滑,至速度为零后又加速返回,而斜劈始终保持静止,物块m上、下滑动的整个过程中
A.地面对斜劈M的摩擦力方向先向左后向右
B.地面对斜劈M的摩擦力方向没有改变
C.物块m向上滑动时的加速度大于向下滑动时的加速度
D.地面对斜劈M的支持力小于(M+m)g
在用插针法测定玻璃砖折射率的实验中,一位同学在纸上画出的界面ab、cd与矩形玻璃砖位置的关系分别如图所示,他的其他操作均正确,且均以ab、cd为界面画光路图。则这位同学测得的折射率与真实值相比 (填“偏大”、“偏小”或“不变”)
酒后驾驶会导致许多安全隐患,这是因为驾驶员的反应时间变长。反应时间是指驾驶员从发现情况到采取制动的时间。下表中“思考距离”是指驾驶员从发现情况到采取制动的时间内汽车行驶的距离;“制动距离”是指驾驶员从发现情况到汽车停止行驶的距离(假设汽车制动时的加速度大小都相同)。
速度 (m/s) | 思考距离/m | 制动距离/m | ||
正常 | 酒后 | 正常 | 酒后 | |
15 | 7.5 | 15.0 | 22.5 | 30.0 |
20 | 10.0 | 20.0 | 36.7 | 46.7 |
25 | 12.5 | 25.0 | 54.2 | 66.7 |
分析上表可知,下列说法不正确的是
A.驾驶员正常情况下反应时间为0.5s
B.驾驶员酒后反应时间比正常情况下多0.5s
C.驾驶员采取制动措施后汽车的加速度大小为3.75m/s2
D.若汽车以25m/s的速度行驶时,发现前方60m处有险情,酒后驾驶不能安全停车
某同学身高1.8m,在运动会上他参加跳高比赛,起跳后身体横着越过了1.8m高的横杆.据此可估算出他起跳时竖直向上的速度大约为(取g=10m/s2)( )
A.2.1 m/s B.4.2 m/s C.3.6 m/s D. 3 m/s
决定平抛物体在空中运动时间的因素是( )
A. 初速度 B. 抛出时物体的高度
C. 抛出时物体的高度和初速度 D. 以上说法都不正确
一列简谐波某时刻的波形如图中实线所示.经过0.5s后的波形如图中的虚线所示.已知波的周期为T,且0.25s<T<0.5s,则( )
A. 不论波向x轴哪一方向传播,在这0.5s内,x=1m处的质点M通过的路程都相等
B. 当波向+x方向传播时,波速等于10m/s
C. 当波沿+x方向传播时,x=1m处的质点M和x=2.5m处的质点N在这0.5s内通过的路程相等
D. 当波沿﹣x方向传播时,经过0.1s时,质点M的位移一定为零
小型交流发电机中,矩形金属线圈在匀强磁场中匀速转动,产生的感应电动势与时间呈正弦函数关系,如图2所示。此线圈与一个R=10Ω的电阻构成闭合电路。不计电路的其他电阻,下列说法正确的是( )
A、交变电流的周期为0.125s
B、交变电流的频率为8Hz
C、交变电流的有效值为A
D、交变电流的最大值为4A
如图所示,斜面体A静置于水平地面上,其倾角为θ(θ<45°),上底面水平的物块B在A上恰能匀速下滑.现对B施加一个沿斜面向上的推力F使B能缓慢地向上匀速运动,某时刻在B上轻轻地放上一个质量为m的小物体C(图中未画出,放上后C与B相对静止),A始终静止,B保持运动状态不变.重力加速度为g,下列说法正确的是
A.B与A间的动摩擦因数μ=tanθ
B.放上C后,B受到的摩擦力不变
C.放上C后,推力F增加了mgsinθ
D.放上C后,A受到地面的支持力增加了mg﹣2mgsin2θ
下列有关物理学史,不符合事实的是 ( )
A、麦克斯韦建立了电磁场理论并预言了电磁波的存在
B、库仑发现了库仑定律,并用实验巧妙的测出了静电力常量
C、牛顿发现了单摆周期公式
D、赫兹首先捕捉到了电磁波
关于物体的动量,下列说法中正确的是( )
A.物体的动量越大,其惯性也越大
B.同一物体的动量越大,其速度一定越大
C.物体的加速度不变,其动量一定不变
D.运动物体在任一时刻的动量方向一定是该时刻的速度方向
如图所示,质量分别为m1,m2的两个物体在光滑水平面上运动,中间用一轻弹簧连接,已知水平向右的力F1=10N,水平向左的力F2=4N,轻弹簧的拉力可能为( )
A 2N B 4N
C 8N D 10N