x | 1 | 2 | 3 | 4 | 10 |
y | 2 | 4 | 10 | 8 | 12 |
去掉其中一组后,剩下的4组数据的线性相关性最强,则应去掉的一组数据所对应的点是( )
单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
由表中数据,求得线性回归方程为 =﹣4x+a.若在这些样本点中任取一点,则它在回归直线左下方的概率为 ( )
印刷册数 (千册) | 2 | 3 | 4 | 5 | 8 |
单册成本 (元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: =
,方程乙:
=
.
完成下表(计算结果精确到0.1);
印刷册数x(千册) | 2 | 3 | 4 | 5 | 8 | |
单册成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估计值 |
| 2.4 | 2.1 |
| 1.6 |
残差 |
| 0 | ﹣0.1 |
| 0.1 | |
模型乙 | 估计值 |
| 2.3 | 2 | 1.9 |
|
残差 |
| 0.1 | 0 | 0 |
|
连锁店 | A店 | B店 | C店 | |||
售价x(元) | 80 | 86 | 82 | 88 | 84 | 90 |
销量y(件) | 88 | 78 | 85 | 75 | 82 | 66 |
附:
价格x/元 | 14 | 16 | 18 | 20 | 22 |
需求量y/件 | 56 | 50 | 43 | 41 | 37 |
求出y关于x的线性回归方程,并说明拟合效果的好坏.
(参考数据: )
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
不“礼让斑马线”驾驶员人数 | 120 | 105 | 100 | 85 | 90 | 80 |
(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数 与月份
之间的回归直线方程
;
(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?
(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.
参考公式:
,
.
广告费用 | 2 | 3 | 4 | 5 |
销售额 | 26 | 39 | 49 | 54 |
根据上表可得回归方程 ,据此模型可预测广告费为6万元的销售额为( )
附:
,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
成绩小于100分 | 成绩不小于100分 | 合计 | |
甲班 | 50 | ||
乙班 |
| 50 | |
合计 | 100 |
①残差平方和越小的模型,拟合的效果越好;②用相关指数 来刻画回归效果,
越小说明拟合效果越好;③在回归直线方程
中,当解释变量
每增加1个单位时,预报变量
平均增加0.2个单位④若变量
和
之间的相关系数为
,则变量
和
之间的负相关很强,以上正确说法的个数是( )
间隔时间/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人数y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这 组数据中选取
组数据求线性回归方程,再用剩下的
组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数
,再求
与实际等候人数
的差,若差值的绝对值都不超过
,则称所求方程是“恰当回归方程”.
附:对于一组数据 ,
,……,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
①若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变;②在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;③若两个变量间的线性相关关系越强,则相关系数 的值越接近于1;④对分类变量
与
的随机变量
的观测值
来说,
越小,判断“
与
有关系”的把握越大.其中正确的命题序号是( )
①.残差图中残差点所在的水平带状区域越宽,则回归方程的预报精确度越高.②.回归直线一定过样本中心( ,
).③.两个模型中残差平方和越小的模型拟合的效果越好.④.甲、乙两个模型的R2分别约为0.88和0.80,则模型乙的拟合效果更好.
②以模型 去拟合一组数据时,为了求出回归方程,设
,将其变换后得到线性方程
,则
,
的值分别是
和
;
③已知随机变量 ,若
,则
的值为
;
④通过回归直线 及回归系数
,可以精确反映变量的取值和变化趋势.
其中正确的选项是( )