题目

已知,则的最小值是_______. 答案: 【解析】 【分析】 根据题设条件可得,可得,利用基本不等式即可求解. 【详解】∵ ∴且 ∴,当且仅当,即时取等号. ∴的最小值为. 故答案为:. 【点睛】本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).
数学 试题推荐