题目
如图,▱ABCD的对角线相交于点O,将线段OD绕点O旋转,使点D的对应点落在BC延长线上的点E处,OE交CD于H,连接DE.
(1)
求证:DE⊥BC;
(2)
若OE⊥CD,求证:2CE•OE=CD•DE;
(3)
若OE⊥CD,BC=3,CE=1,求线段AC的长.
答案: 证明:由旋转可知OE=OD,∴∠ODE=∠OED,∵四边形ABCD是平行四边形,∴OB=OD,OA=OC∴OB=OE,∴∠OEB=∠OBE,∵∠BDE+∠DBE+∠BED=180°,∴∠ODE+∠OED+∠OEB+∠OBE=180°∴∠OED+∠OEB=90°,即∠DEB=90°,∴DE⊥BC;
解:∵OE⊥CD,∴∠CHE=90°,∴∠CDE+∠OED=90°∵∠OED+∠OEB=90°,∴∠CDE=∠OEB∵∠OEB=∠OBE,∴∠CDE=∠OBE,∵∠CDE=∠OBE,∠CED=∠DEB,∴△CDE∽△DBE∴ CDBD = CEDE ,即CE•BD=CD•DE,∵OE=OD,OB=OD,BD=OB+OD,∴BD=2OE,∴2CE•OE=CD•DE;
解:∵BC=3,CE=1,∴BE=4由(2)知,△CDE∽△DBE∴ CEDE = DEBE ,即DE2=CE•BE=4,∴DE=2,过点O作OF⊥BE,垂足为F,∵OB=OE,∴BF=EF= 12 BE=2,∴CF=EF﹣CE=1∵OB=OD,BE=EF,∴OF= 12 DE=1,在Rt△OCF中,OC= OF2+CF2 = 12+12 = 2 ,∴AC=2OC=2 2 .