题目

设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时, .(1)求的解析式;(2)若在上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由. 答案:解:(1)当x∈[-1,0]时,2-x∈[2,3],f(x)=g(2-x)= -2ax+4x3;当x∈时,f(x)=f(-x)=2ax-4x3,       ∴………………………………………4分       (2)由题设知,>0对x∈恒成立,即2a-12x2>0对x∈恒成立,于是,a>6x2,从而a>(6x2)max=6.………………………8分       (3)因f(x)为偶函数,故只需研究函数f(x)=2ax-4x3在x∈的最大值.           令=2a-12x2=0,得.…10分     若∈,即0<a≤6,则           ,           故此时不存在符合题意的;         若>1,即a>6,则在上为增函数,于是.       令2a-4=12,故a=8.             综上,存在a = 8满足题设.………………14分
数学 试题推荐