题目
如图,AB是⊙O的直径,点C为AB上一点,作CD⊥AB交⊙O于D,连接AD,将△ACD沿AD翻折至△AC′D.
(1)
请你判断C′D与⊙O的位置关系,并说明理由;
(2)
过点B作BB′⊥C′D′于B′,交⊙O于E,若CD= ,AC=3,求BE的长.
答案: 解:C′D是⊙O的切线,理由:连接OD,∵OD=OA,∴∠OAD=∠ADO,∵将△ACD沿AD翻折至△AC′D,∴∠C′DA=∠CDA,∵CD⊥AB,∴∠DAC+∠ADC=90°,∴∠ADO+∠C′DA=90°,∴OD⊥C′D,∴C′D是⊙O的切线
解:连接AE,BD,∵AB是⊙O的直径,∴AE⊥BE,AD⊥BD,∵BB′⊥C′D′,∴∠C′=∠B′=∠AEB′=90°,∴四边形AEB′C′是矩形,∴AC′=B′E,AE=C′B′,∵将△ACD沿AD翻折至△AC′D,∵AC′=AC=3,C′D=CD= 21 ,∵AC′⊥C′B′,OD⊥C′B′,∴AC′∥OD∥BB′,∵AO=BO,∴C′B′=2C′D=2 21 ,∴AE=2 21 ,∵DC⊥AB,∴CD2=AC•CB,∴CB=7,∴AB=10,∴BE= AB2−AE2 =4.