题目

如图,已知AD是△ABC的外角∠EAC的平分线,交BC的延长线于点D,延长DA交△ABC的外接圆于点F,连接FB,FC. (1) 求证:∠FBC=∠FCB; (2) 已知FA•FD=12,若AB是△ABC外接圆的直径,FA=2,求CD的长. 答案: 证明:∵四边形AFBC内接于圆, ∴∠FBC+∠FAC=180°,∵∠CAD+∠FAC=180°,∴∠FBC=∠CAD,∵AD是△ABC的外角∠EAC的平分线,∴∠EAD=∠CAD,∵∠EAD=∠FAB,∴∠FAB=∠CAD,又∵∠FAB=∠FCB,∴∠FBC=∠FCB; 解:由(1)得:∠FBC=∠FCB, 又∵∠FCB=∠FAB,∴∠FAB=∠FBC,∵∠BFA=∠BFD,∴△AFB∽△BFD,∴ BFFD=FABF ,∴BF2=FA•FD=12,∴BF=2 3 ,∵FA=2,∴FD=6,AD=4,∵AB为圆的直径,∴∠BFA=∠BCA=90°,∴tan∠FBA= AFBF = 223 = 33 ,∴∠FBA=30°,又∵∠FDB=∠FBA=30°,∴CD=AD•cos30°=4× 32 =2 3 .
数学 试题推荐