题目
如图,在正方体中,点是底面的中心,是线段的上一点。(1)若为的中点,求直线与平面所成角的正弦值; (2)能否存在点使得平面平面,若能,请指出点的位置关系,并加以证明;若不能,请说明理由。
答案:【答案】(1) (2)见证明【解析】(1)建立空间坐标系得到直线的方向向量和面的法向量,再由向量的夹角公式得到结果;(2)建立坐标系得到两个面的法向量,再由法向量互相垂直得到结果.不妨设正方体的棱长为2,以,,分别为,,轴建立如图所示的空间直角坐标系,则,,,.(1)因为点是的中点,所以点的坐标为.所以,,.设是平面的法向量,则,即.取,则,所以平面的一个法向量为.所以 .所以直线与平面所成角的正弦值为.(2)假设存在点使得平面平面,设.显然,.设是平面的法向量,则,即,取,则,,所以平面的一个法向量为.因为,所以点的坐标为.所以,.设是平面的法向量,则,即.取,则,所以平面的一个法向量为.因为平面平面,所以,即,,解得.所以的值为2.即当时,平面平面.