题目

在中,角A,B,C的对边分别为a,b,c,且 . (Ⅰ)求A;(Ⅱ)若 , 且为锐角三角形,求的取值范围. 答案:解:(Ⅰ)∵acosB+bcosA−2ccosA=0,∴由正弦定理得sinAcosB+sinBcosA−2sinCcosA=0,∴sin(A+B)−2sinCcosA=0,∵A+B=π−C,∴sin(A+B)=sin(π−C)=sinC,∴sinC−2sinCcosA=0,又C为三角形的内角,sinC≠0,∴1−2cosA=0,∴cosA=12,又A为三角形内角,∴A=π3;(Ⅱ)设△ABC的外接圆半径为R,则asinA=2R⇒2R=43,∴由正弦定理得b=2RsinB=43sinB,c=2RsinC=43sinC,∴b+2c=43(sinB+2sinC)=43[sinB+2sin(A+B)]=43(2sinB+3cosB)=473sin(B+φ) (其中cosφ=27,sinφ=37,且π6<φ<π4),因为△ABC为锐角三角形,则{0<B<π20<2π3−B<π2,解得π6<B<π2,所以π6+φ<B+φ<π2+φ,所以sin(π2+φ)≤sin(B+φ)≤1,即27≤sin(B+φ)≤1,所以83≤473sin(B+φ)≤473,即833≤b+2c≤4213.
数学 试题推荐