题目

已知如图,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AE平分∠CAB,交CD于E,EF∥BC交AB于F,G为BC上一点,连接FG. (1) 求证:△AEC≌△AEF; (2) 若∠EFG=∠AEC,求证:FG∥AE. 答案: 证明:∵CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACE=∠B,∵EF∥BC,∴∠AFE=∠B,∴∠ACE=∠AFE,∵∠EAC=∠EAF,AE=AE,∴△AEC≌△AEF 解:∵△AEC≌△AEF.∴∠AEC=∠AEF,∵∠AEC=∠EFG,∴∠AEF=∠EFG,∴AE∥FG.
数学 试题推荐