题目

已知函数, (1)当时,在(1,+∞)上恒成立,求实数m的取值范围; (2)当m=2时,若函数k(x)=f(x)-h(x)在区间[1,3]上恰有两个不同零点,求实数a的取值范围. 答案:【解】 (1)由f(x)≥h(x)在(1,+∞)上恒成立, 得m≤在(1,+∞)上恒成立, 令g(x)=,则g′(x)=,故g′(e)=0, 当x∈(1,e)时,g′(x)<0; x∈(e,+∞)时,g′(x)>0. 故g(x)在(1,e)上单调递减,在(e,+∞)上单调递增, 故当x=e时,g(x)的最小值为g(e)=e. 所以m≤e.                                         .......6分 (2)由已知可知k(x)=x-2ln x-a,函数k(x)在[1,3]上恰有两个不同零点,相当于函数φ(x)=x-2ln x与直线y=a有两个不同的交点, φ′(x)=1-=,故φ′(2)=0, 所以当x∈[1,2)时,φ′(x)<0,所以φ(x)单调递减, 当x∈(2,3]时,φ′(x)>0,所以φ(x)单调递增. 所以φ(1)=1,φ(3)=3-2ln 3,φ(2)=2-2ln 2, 且φ(1)>φ(3)>φ(2)>0, 所以2-2ln 2<a≤3-2ln 3. 所以实数a的取值范围为(2-2ln 2,3-2ln 3].                 .......12分
数学 试题推荐