题目

(湖南卷理17)如图所示,四棱锥P-ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,PA⊥底面ABCD,PA=2.   (Ⅰ)证明:平面PBE⊥平面PAB; (Ⅱ)求平面PAD和平面PBE所成二面角(锐角)的大小. 答案:解: 解法一(Ⅰ)如图所示,连结BD,由ABCD是菱形且∠BCD=60°知, △BCD是等边三角形.因为E是CD的中点,所以BE⊥CD,又AB∥CD, 所以BE⊥AB.又因为PA⊥平面ABCD,平面ABCD,所以 PA⊥BE.而AB=A,因此BE⊥平面PAB. 又平面PBE,所以平面PBE⊥平面PAB. (Ⅱ)延长AD、BE相交于点F,连结PF. 过点A作AH⊥PB于H,由(Ⅰ)知 平面PBE⊥平面PAB,所以AH⊥平面PBE. 在Rt△ABF中,因为∠BAF=60°, 所以,AF=2AB=2=AP. 在等腰Rt△PAF中,取PF的中点G,连接AG. 则AG⊥PF.连结HG,由三垂线定理的逆定理得, PF⊥HG.所以∠AGH是平面PAD和平面PBE所成二面角的平面角(锐角). 在等腰Rt△PAF中, 在Rt△PAB中, 所以,在Rt△AHG中, 故平面PAD和平面PBE所成二面角(锐角)的大小是 解法二: 如图所示,以A为原点,建立空间直角坐标系.则相关 各点的坐标分别是A(0,0,0),B(1,0,0), P(0,0,2), (Ⅰ)因为, 平面PAB的一个法向量是, 所以共线.从而BE⊥平面PAB. 又因为平面PBE, 故平面PBE⊥平面PAB.    (Ⅱ)易知          设是平面PBE的一个法向量,则由得 所以       设是平面PAD的一个法向量,则由得 所以故可取       于是,       故平面PAD和平面PBE所成二面角(锐角)的大小是
数学 试题推荐