题目
袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是,从B中摸出一个红球的概率为p. (Ⅰ) 从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止. (i)求恰好摸5次停止的概率; (ii)记5次之内(含5次)摸到红球的次数为,求随机变量的分布率及数学期望E. (Ⅱ) 若A、B两个袋子中的球数之比为12,将A、B中的球装在一起后,从中摸出一个红球的概率是,求p的值.
答案: (Ⅰ) (i) (ii) (Ⅱ) 解析: (Ⅰ)(i) (ii)随机变量的取值为0,1,2,3,; 由n次独立重复试验概率公式,得 ; (或) 随机变量的分布列是 0 1 2 3 P 的数学期望是: . (Ⅱ)设袋子A中有m个球,则袋子B中有2m个球. 由,得.