题目

如图,在矩形ABCD中,AB=2,AD=1,E是CD边上的中点,以AE为折痕将△DAE向上折起,使D为D′,且平面D′AE⊥平面ABCE.(1)求证:AD′⊥EB;(2)求直线AC与平面ABD′所成角的大小. 答案:解法一:(1)证明:因为AD′=D′E=1,取AE的中点O,连结D′O,则D′O⊥AE, ∵平面D′AE⊥平面ABCE,且交线为AE,∴D′O⊥平面ABCE.                              以O为原点,平行于BC的直线为x轴,平行于AB的直线为y轴,OD′所在直线为z轴,建立空间直角坐标系O—xyz,如图所示,则A(,-,0),B(,,0),C(-,,0),E(-,,0),D′(0,0,),∴=(-,,),=(-1,-1,0).                                              ∵·=(-)×(-1)+×(-1)+×0=0,∴⊥,即AD′⊥BE.                                                                                   (2)解:设平面ABD′的法向量为n=(x,y,z).则即                                                      ∴令z=1,则x=.∴平面ABD′的一个法向量是n=(,0,1).                                                               ∴cos〈,n〉===-.                                        设直线AC与平面ABD′所成的角为θ,则sinθ=|cos〈,n〉|=.∴直线AC与平面ABD′所成的角为Arcsin.                                                     解法二:(1)证明:在RT△BCE中,BE==,在RT△AD′E中,AE==,∵AB2=22=BE2+AE2,∴AE⊥BE.                                                                                   ∵平面AED′⊥平面ABCE,且交线为AE,∴BE⊥平面AED′.                                                                                                  ∵AD′平面AED′,∴AD′⊥BE.                                                                                                             (2)解:设AC与BE相交于点F,由(1)知AD′⊥BE,∵AD′⊥ED′,∴AD′⊥平面EBD′.                                                                                                 ∵AD′平面AED′,∴平面ABD′⊥平面EBD′,且交线为BD′.作FG⊥BD′,垂足为G,则FG⊥平面ABD′,连结AG,则∠FAG是直线AC与平面ABD′所成的角.                                             由平面几何的知识可知==,∴EF=13EB=.在RT△AEF中,AF===,在RT△EBD′中,=,可求得FG=.                                                  ∴sin∠FAG===.∴直线AC与平面ABD′所成的角为arcsin.                                                     
数学 试题推荐