题目

如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则(  ) A.点B到AO的距离为sin54° B.点B到AO的距离为tan36° C.点A到OC的距离为sin36°sin54° D.点A到OC的距离为cos36°sin54° 答案:C【考点】T7:解直角三角形;J5:点到直线的距离;JA:平行线的性质. 【分析】根据图形得出B到AO的距离是指BO的长,过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出BO=ABsin36°,即可判断A、B;过A作AD⊥OC于D,则AD的长是点A到OC的距离,根据锐角三角形函数定义得出AD=AOsin36°,AO=AB•sin54°,求出AD,即可判断C、D. 【解答】解: B到AO的距离是指BO的长, ∵AB∥OC, ∴∠BAO=∠AOC=36°, ∵在Rt△BOA中,∠BOA=90°,AB=1, ∴sin36°=, ∴BO=ABsin36°=sin36°, 故A、B选项错误; 过A作AD⊥OC于D,则AD的长是点A到OC的距离, ∵∠BAO=36°,∠AOB=90°, ∴∠ABO=54°, ∵sin36°=, ∴AD=AO•sin36°, ∵sin54°=, ∴AO=AB•sin54°, ∵AB=1, ∴AD=AB•sin54°•sin36°=1×sin54°•sin36°=sin54°•sin36°,故C选项正确,D选项错误; 故选:C.  
数学 试题推荐