题目
求证:在直角梯形中,两个直角顶点到对腰中点的距离相等.如图1-1-10,已知在梯形ABCD中,AD∥BC,∠ADC=90°,E是AB边的中点,连结ED、EC.求证:ED=EC.图1-1-10
答案:思路解析:在梯形中,若已知一腰的中点,一般过这点作底边的平行线即可得到另一腰的中点.所以由E是AB边的中点,作EF∥BC交DC于F,即可得EF⊥DC,从而利用线段中垂线的性质得到结论.证明:过E点作EF∥BC交DC于F,∵在梯形ABCD中,AD∥BC,∴AD∥EF∥BC.∵E是AB的中点,∴F是DC的中点(经过梯形一腰中点与底平行的直线必平分另一腰).∵∠ADC =90°,∴∠DFE =90°.∴EF⊥DC于F.又∵F是DC中点,∴EF是DC的垂直平分线.∴ED =EC(线段垂直平分线上的点到线段两端点距离相等).