题目

边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD延长线)交于点F. (1)连接CQ,证明:CQ=AP; (2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC; (3)猜想PF与EQ的数量关系,并证明你的结论. 答案:【考点】LO:四边形综合题. 【分析】(1)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论; (2)如图1证明△APB∽△CEP,列比例式可得y与x的关系式,根据CE=BC计算CE的长,即y的长,代入关系式解方程可得x的值; (3)如图3,作辅助线,构建全等三角形,证明△PGB≌△QEB,得EQ=PG,由F、A、G、P四点共圆, 得∠FGP=∠FAP=45°,所以△FPG是等腰直角三角形,可得结论. 如图4,当F在AD的延长线上时,同理可得结论. 【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ, ∴BP=BQ,∠PBQ=90°. ∵四边形ABCD是正方形, ∴BA=BC,∠ABC=90°. ∴∠ABC=∠PBQ. ∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ. 在△BAP和△BCQ中, ∵, ∴△BAP≌△BCQ(SAS). ∴CQ=AP; (2)解:如图1,∵四边形ABCD是正方形, ∴∠BAC=∠BAD=45°,∠BCA=∠BCD=45°, ∴∠APB+∠ABP=180°﹣45°=135°, ∵DC=AD=2, 由勾股定理得:AC==4, ∵AP=x, ∴PC=4﹣x, ∵△PBQ是等腰直角三角形, ∴∠BPQ=45°, ∴∠APB+∠CPQ=180°﹣45°=135°, ∴∠CPQ=∠ABP, ∵∠BAC=∠ACB=45°, ∴△APB∽△CEP, ∴, ∴, ∴y=x(4﹣x)=﹣x(0<x<4), 由CE=BC==, ∴y=﹣x=, x2﹣4x=3=0, (x﹣3)(x﹣1)=0, x=3或1, ∴当x=3或1时,CE=BC; (3)解:结论:PF=EQ,理由是: 如图3,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°, ∵∠BPQ=45°, ∴∠GPB=45°, ∴∠GPB=∠PQB=45°, ∵PB=BQ,∠ABP=∠CBQ, ∴△PGB≌△QEB, ∴EQ=PG, ∵∠BAD=90°, ∴F、A、G、P四点共圆, 连接FG, ∴∠FGP=∠FAP=45°, ∴△FPG是等腰直角三角形, ∴PF=PG, ∴PF=EQ. 当F在AD的延长线上时,如图4,同理可得:PF=PG=EQ.  
数学 试题推荐