题目

在直线2x﹣y﹣4=0有一点P,使它与两点A(4,﹣1),B(3,4)的距离之差最大,则距离之差的最大值为(  )                                                                        A.3                            B.                       C.5                            D. 答案:D【分析】判断A,B与直线的位置关系,求出A关于直线的对称点A1的坐标,求出直线A1B的方程,与直线2x﹣y﹣4=0联立,求出P的坐标,从而求出距离之差的最大值.                                       【解答】解:如图示:                                                                                                                          易知A(4,﹣1)、B(3,4)在直线l:2x﹣y﹣4=0的两侧.                        作A关于直线l的对称点A1(0,1),                                                     当A1、B、P共线时距离之差最大,                                                          A1B的方程为:y﹣x﹣1=0…①直线2x﹣y﹣4=0…②                                        解①②得P点的坐标是(5,6),                                                            ∴PA﹣PB=5﹣2=3,                                                                  故选:D.                                                                                          【点评】本题考查与直线关于点、直线对称的直线方程,两点间距离公式的应用,考查转化思想,计算能力,是中档题.                                                                                                          
数学 试题推荐