题目

已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴重直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|. (1)求C1的离心率; (2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程. 答案:(1);(2):,: . 【分析】 (1)根据题意求出的方程,结合椭圆和抛物线的对称性不妨设在第一象限,运用代入法求出点的纵坐标,根据,结合椭圆离心率的公式进行求解即可; (2)由(1)可以得到椭圆的标准方程,确定椭圆的四个顶点坐标,再确定抛物线的准线方程,最后结合已知进行求解即可; 【详解】解:(1)因为椭圆的右焦点坐标为:,所以抛物线的方程为,其中. 不妨设在第一象限,因为椭圆的方程为:, 所以当时,有,因此的纵坐标分别为,; 又因为抛物线的方程为,所以当时,有, 所以的纵坐标分别为,,故,. 由得,即,解得(舍去),. 所以的离心率为. (2)由(1)知,,故,所以的四个顶点坐标分别为,,,,的准线为. 由已知得,即. 所以的标准方程为,的标准方程为. 【点睛】本题考查了求椭圆的离心率,考查了求椭圆和抛物线的标准方程,考查了椭圆的四个顶点的坐标以及抛物线的准线方程,考查了数学运算能力.
数学 试题推荐