题目

已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切. (1)若A在直线x+y=0上,求⊙M的半径. (2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由. 答案:(1)或; (2)见解析. 【解析】 【分析】 (1)设,,根据,可知;由圆的性质可知圆心必在直线上,可设圆心;利用圆心到的距离为半径和构造方程,从而解出;(2)当直线斜率存在时,设方程为:,由圆的性质可知圆心必在直线上;假设圆心坐标,利用圆心到的距离为半径和构造方程,解出坐标,可知轨迹为抛物线;利用抛物线定义可知为抛物线焦点,且定值为;当直线斜率不存在时,求解出坐标,验证此时依然满足定值,从而可得到结论. 【详解】 (1)在直线上    设,则 又    ,解得: 过点,    圆心必在直线上 设,圆的半径为 与相切    又,即 ,解得:或 当时,;当时, 的半径为:或 (2)存在定点,使得 说明如下: ,关于原点对称且 直线必为过原点的直线,且 ①当直线斜率存在时,设方程为: 则的圆心必在直线上 设,的半径为 与相切    又 ,整理可得: 即点轨迹方程为:,准线方程为:,焦点 ,即抛物线上点到的距离    当与重合,即点坐标为时, ②当直线斜率不存在时,则直线方程为: 在轴上,设 ,解得:,即 若,则 综上所述,存在定点,使得为定值. 【点睛】 本题考查圆的方程的求解问题、圆锥曲线中的定点定值类问题.解决本定点定值问题的关键是能够根据圆的性质得到动点所满足的轨迹方程,进而根据抛物线的定义得到定值,进而验证定值符合所有情况,使得问题得解.
数学 试题推荐