题目
已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D. (1)求E的方程; (2)证明:直线CD过定点.
答案:(1);(2)证明详见解析. 【解析】 【分析】 (1)由已知可得:, ,,即可求得,结合已知即可求得:,问题得解. (2)设,可得直线的方程为:,联立直线的方程与椭圆方程即可求得点的坐标为,同理可得点的坐标为,即可表示出直线的方程,整理直线的方程可得:,命题得证. 【详解】(1)依据题意作出如下图象: 由椭圆方程可得:, , , , 椭圆方程为: (2)证明:设, 则直线的方程为:,即: 联立直线的方程与椭圆方程可得:,整理得: ,解得:或 将代入直线可得: 所以点的坐标为. 同理可得:点的坐标为 直线的方程为:, 整理可得: 整理得: 故直线过定点 【点睛】本题主要考查了椭圆的简单性质及方程思想,还考查了计算能力及转化思想、推理论证能力,属于难题.