题目
设正项数列{an}的前n项和Sn , 且满足2Sn=an2+an .
(1)
求数列{an}的通项公式;
(2)
若数列bn= + ,数列{bn}的前n项和为Tn , 求证:Tn<2n+ .
答案: 解:由题意可得 2sn=an2+an,2sn−1=an−12+an−1 ,两式相减得, 2an=an2−an−12+an+an−1 , ∴ an=an2−an−12−an−an−1=0 ,即(an+an﹣1)(an﹣an﹣1﹣1)=0,又∵数列{an}为正项数列,∴an﹣an﹣1=1.因此数列{an}为等差数列.又n=1时, 2a1=a12+a1 ,∴a1=1,an=1+n﹣1=n
解:证明:由(1)知 bn=n+1n+2+n+2n+1 ,又 bn=n+1n+2+n+2n+1=1−1n+2+1+1n+1=2+1n+1−1n+2 , ∴ Tn=b1+b2+⋯+bn=(2+2+⋯+2)+[(12−13)+(13−14)+⋯+(1n+1−1n+2)] ∴ Tn=b1+b2+⋯+bn=2n+12−1n+2<2n+12