题目

已知:AB是⊙0直径,C是⊙0外一点,连接BC交⊙0于点D,BD=CD,连接AD、AC. (1) 如图1,求证:∠BAD=∠CAD (2) 如图2,过点C作CF⊥AB于点F,交⊙0于点E,延长CF交⊙0于点G.过点作EH⊥AG于点H,交AB于点K,求证AK=2OF; (3) 如图3,在(2)的条件下,EH交AD于点L,若0K=1,AC=CG,求线段AL的长. 答案: 解:∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADC=90°.∵BD=CD,∠BDA=∠CDA,AD=AD,∴△ABD≌△ACD,∴∠BAD=∠CAD. 解:连接BE.∵弧BG=弧BG ,∴∠GAB=∠BEG.∵CF⊥AB,∴∠KFE=90°.∵EH⊥AG,∴∠AHE=∠KFE=90°,∠AKH=∠EKF,∴∠HAK=∠KEF=∠BEF.∵FE=FE,∠KFE=∠BFE=90°,∴△KFE≌△BFE,∴BF=KF= 12 BK.∵ OF=OB-BF,AK=AB-BK,∴AK=2OF. 解:连接CO并延长交AG于点M,连接BG.设∠GAB= α .∵AC=CG, ∴点C在AG的垂直平分线上.∵ OA=OG,∴点O在AG的垂直平分线上,∴CM垂直平分AG,∴AM=GM,∠AGC+∠GCM=90°.∵AF⊥CG,∴∠AGC +∠GAF =90°,∴∠GAF=∠GCM = α .∵AB为⊙O的直径,∴∠AGB= 90°,∴∠AGB=∠CMG=90°.∵AB=AC=CG ,∴△AGB≌△CMG,∴BG=GM= 12 AG.在Rt△AGB中, tan∠GAB=tanα=GBAG=12 .∵∠AMC=∠AGB= 90°,∴BG∥CM, ∴∠BGC=∠MCG= α .设BF=KF=a, tan∠BGF=tanα=BFGF=12 ,∴GF=2a, tan∠GAF=tanα=GFAF=12 ,AF=4a.∵OK=1,∴OF=a+1,AK=2OF=2(a+1),∴AF=AK+KF=a+2(a+1)=3a+2,∴3a+2=4a,∴a=2, AK=6,∴AF=4a=8,AB=AC=CG=10,GF=2a=4,FC=CG-GF=6.∵tanα=tan∠HAK= HKAH=12 ,设KH=m,则AH=2m,∴AK= m2+(2m)2 =6,解得:m= 655 ,∴AH=2m= 1255 .在Rt△BFC中, tan∠BCF=BFFC=13 .∵∠BAD+∠ABD=90°, ∠FBC+∠BCF=90°,∴∠BCF=∠BAD, tan∠BAD=tan∠BCF=13 ,∴tan∠GAD= tan∠GAF+tan∠BAD1−tan∠GAF⋅tan∠BAD = 12+131−12×13=1 ,∴∠GAD=45°,∴HL=AH,AL= 2 AH= 12105 .
数学 试题推荐