题目

已知函数f(x)= sin(2x+ )+sin2x. (1) 求函数f(x)的最小正周期; (2) 若函数g(x)对任意x∈R,有g(x)=f(x+ ),求函数g(x)在[﹣ , ]上的值域. 答案: 解:f(x)= 22 sin(2x+ π4 )+sin2x = 22(22sin2x+22cos2x)+sin2x = 12 sin2x+ 12 cos2x+sin2x= 12 sin2x+ cos2x−12+sin2x = 12 sin2x+1﹣ 12 = 12 sin2x+ 12 ,∴f(x)的最小正周期T= 2π2=π ; 解:∵函数g(x)对任意x∈R,有g(x)=f(x+ π6 ), ∴g(x)= 12 sin2(x+ π6 )+ 12 = 12 sin(2x+ π3 )+ 12 ,当x∈[﹣ π6 , π2 ]时,则2x+ π3 ∈ [0,4π3] ,则 −32 ≤sin(2x+ π3 )≤1,即 −32 × 12+12 ≤g(x) ≤12+12 ,解得 2−34 ≤g(x)≤1.综上所述,函数g(x)在[﹣ π6 , π2 ]上的值域为:[ 2−34 ,1].
数学 试题推荐