题目
如图,△ABC内接于圆O,AB=AC,AD⊥AB,AD交BC于点E,点F在DA的延长线上,AF=AE.求证:
(1)
BF是圆O的切线;
(2)
BE2=AE•DF.
答案: 证明:连接BD, 则∵AD⊥AB,∴BD是⊙O的直径,∵AF=AE,∴∠FBA=∠EBA,∵AB=AC,∴∠FBA=∠C,∵∠C=∠D,∠D+∠ABD=90°,∴∠FBA+∠ABD=90°,即∠FBD=90°,∴BF是⊙O的切线;
由切割线定理可得BF2=AF•DF, ∵AF=AE,BE=BF,∴BE2=AE•DF.