题目

定义:我们把对角线相等的四边形叫做和美四边形.请举出一种你所学过的特殊四边形中是和美四边形的例子.如图1,E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,已知四边形EFGH是菱形,求证:四边形ABCD是和美四边形;如图2,四边形ABCD是和美四边形,对角线AC,BD相交于O,,E、F分别是AD、BC的中点,请探索EF与AC之间的数量关系,并证明你的结论. 答案:【答案】(1)矩形;(2)证明见解析;(3),证明见解析.【解析】(1)等腰梯形、矩形、正方形,任选一个即可;(2)根据三角形中位线性质可得(3),连接BE并延长至M,使,连接DM、AM、CM,先证四边形MABD是平行四边形,,,,是等边三角形,,由三角形中位线性质得.解:矩形的对角线相等,矩形是和美四边形;如图1,连接AC、BD,,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,,,四边形EFGH是菱形,,,四边形ABCD是和美四边形;,证明:如图2,连接BE并延长至M,使,连接DM、AM、CM,,四边形MABD是平行四边形,,,,是等边三角形,,中,,,.
数学 试题推荐