题目

如图,边长为12的等边三角形ABC中,E是高AD上的一个动点,连结CE,将线段CE绕点C逆时针旋转60°得到CF,连结DF.则在点E运动过程中,线段DF长度的最小值是__________. 答案:【答案】3【解析】取AC的中点G,连接EG,根据等边三角形的性质可得CD=CG,再求出∠DCF=∠GCE,根据旋转的性质可得CE=CF,然后利用“边角边”证明△DCF和△GCE全等,再根据全等三角形对应边相等可得DF=EG,然后根据垂线段最短可得EG⊥AD时EG最短,再根据∠CAD=30°求解即可.解:如图,取AC的中点G,连接EG,∴.∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∠ECD=∠ECD,∴∠DCF=∠GCE,∵AD是等边△ABC底边BC的高,也是中线,∴,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时,,,∴DF=EG=3.故答案为:3.
数学 试题推荐