题目

如图,四边形与均为菱形,,且.(Ⅰ)求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)若为线段上的一点,且满足直线与平面所成角的正弦值为,求线段的长. 答案:【答案】(1)见解析;(2)二面角的余弦值为;(3).【解析】分析:(1)由菱形的性质可得,由等腰三角形的性质可得,根据线面垂直的判定定理可得平面;(2)先证明为等边三角形,可得,于是可以为坐标轴建立坐标系,利用向量垂直数量积为零,列方程组求出平面的法向量与平面的法向量,利用空间向量夹角余弦公式可得结果;(3)设由直线与平面所成角的正弦值为,利用空间向量夹角余弦公式列方程求得,从而可得结果.详解:(1)设与相交于点,连接,∵四边形为菱形,∴,且为中点,∵,∴, 又,∴平面. (2)连接,∵四边形为菱形,且,∴为等边三角形,∵为中点,∴,又,∴平面.∵两两垂直,∴建立空间直角坐标系,如图所示, 设,∵四边形为菱形, ,∴. ∵为等边三角形,∴.∴,∴,设平面的法向量为,则令,得 设平面的法向量为,则,令,得 所以 又因为二面角为钝角,所以二面角的余弦值为 (3)设 所以 化简得解得:所以.
数学 试题推荐