题目

已知椭圆,为椭圆的左、右焦点,点在直线上且不在轴上,直线与椭圆的交点分别为和,为坐标原点.设直线的斜率为,证明:问直线上是否存在点,使得直线的斜率满足?若存在,求出所有满足条件的点的坐标;若不存在,说明理由. 答案:【答案】(1)证明见解析;(2).【解析】(1)设出P的坐标,表示出斜率,化简可得结论;(2)设出直线的方程与椭圆方程联立,求出斜率,利用kOA+kOB+kOC+kOD=0,即可得到结论.因为椭圆方程为,所以F1(﹣1,0)、F2(1,0)设P(x0,2﹣x0),则,,所以(2)记A、B、C、D坐标分别为(x1,y1)、(x1,y1)、(x1,y1)、(x1,y1).设直线PF1:x=m1y﹣1,PF2:x=m2y+1联立可得,代入,可得同理,联立PF2和椭圆方程,可得由及m1﹣3m2=2(由(1)得)可解得,或,所以直线方程为或,所以点P的坐标为(0,2)或
数学 试题推荐