题目
如图,抛物线的顶点D的坐标为(1,﹣4),与y轴交于点C(0,﹣3),与x轴交于A、B两点.
(1)
求该抛物线的函数关系式;
(2)
在抛物线上存在点P(不与点D重合),使得S△PAB=S△ABD , 请求出P点的坐标.
答案: 解:∵抛物线的顶点D的坐标为(1,﹣4),∴设抛物线的函数关系式为y=a(x﹣1)2﹣4,又∵抛物线过点C(0,﹣3),∴﹣3=a(0﹣1)2﹣4,解得a=1,∴抛物线的函数关系式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;
解:∵S△PAB=S△ABD,且点P在抛物线上,∴点P到线段AB的距离一定等于顶点D到AB的距离,∴点P的纵坐标一定为4.令y=4,则x2﹣2x﹣3=4,解得x1=1+2 2 ,x2=1﹣2 2 .∴点P的坐标为(1+2 2 ,4)或(1﹣2 2 ,4).