题目
已知数列{an}前n项和Sn满足:2Sn+an=1
(1)
求数列{an}的通项公式;
(2)
设bn= ,数列{bn}的前n项和为Tn , 求证:Tn< .
答案: 解:∵2Sn+an=1, ∴当n≥2时,2Sn﹣1+an﹣1=1,∴2an+an﹣an﹣1=0,化为 an=13an−1 .当n=1时,2a1+a1=1,∴a1= 13 .∴数列{an}是等比数列,首项与公比都为 13 .∴ an=(13)n .
证明:bn= 2an+1(1+an)(1+an+1) = 2(13)n+1(1+13n)(1+13n+1) = 2×3n(1+3n)(1+3n+1) = 13n+1−13n+1+1 ,∴数列{bn}的前n项和为Tn= (13+1−132+1) + (132+1−133+1) +…+ (13n+1−13n+1+1) = 14−13n+1+1<14 .∴Tn< 14 .