题目

已知关于x的一元二次方程x2+2x+=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=x2+2x+的图象向下平移9个单位,求平移后的图象的表达式;(3)在(2)的条件下,平移后的二次函数的图象与x轴交于点A,B(点A在点B左侧),直线y=kx+b(k>0)过点B,且与抛物线的另一个交点为C,直线BC上方的抛物线与线段BC组成新的图象,当此新图象的最小值大于﹣5时,求k的取值范围. 答案:解:(1)∵关于x的一元二次方程x2+2x+k-12=0有实数根,∴△=b2﹣4ac=4﹣4×k-12≥0,∴k﹣1≤2,∴k≤3,∵k为正整数,∴k的值是1,2,3;(2)∵方程有两个非零的整数根,当k=1时,x2+2x=0,不合题意,舍去,当k=2时,x2+2x+12=0,方程的根不是整数,不合题意,舍去,当k=3时,x2+2x+1=0,解得:x1=x2=﹣1,符合题意,∴k=3,∴y=x2+2x+1,∴平移后的图象的表达式y=x2+2x+1﹣9=x2+2x﹣8;(3)令y=0,x2+2x﹣8=0,∴x1=﹣4,x2=2,∵与x轴交于点A,B(点A在点B左侧),∴A(﹣4,0),B(2,0),∵直线l:y=kx+b(k>0)经过点B,∴函数新图象如图所示,当点C在抛物线对称轴左侧时,新函数的最小值有可能大于﹣5,令y=﹣5,即x2+2x﹣8=﹣5,解得:x1=﹣3,x2=1,(不合题意,舍去),∴抛物线经过点(﹣3,﹣5),当直线y=kx+b(k>0)经过点(﹣3,﹣5),(2,0)时,可求得k=1,由图象可知,当0<k<1时新函数的最小值大于﹣5.
数学 试题推荐