题目

如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE. (1) 求证:四边形AEBD是矩形; (2) 当∠BAC=时,矩形AEBD是正方形. 答案: 证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD, ∴四边形AEBD是平行四边形, ∵AB=AC,AD是∠BAC的角平分线, ∴AD⊥BC, ∴∠ADB=90°, ∴平行四边形AEBD是矩形; 【1】90°.
数学 试题推荐