题目
(1)
计算:
(2)
先化简再求值: ,其中 .
答案: 解: −12022+|−3|+3⋅tan30°−83−(2021−π)0+(12)−1 =−1+3+3×33−2−1+2 =−1+3+1−2−1+2 =2
解: (3x+1−x+1)÷x2+4x+4x+1 =[3x+1−(x+1)(x−1)x+1]⋅x+1(x+2)2 = =3−(x2−1)x+1⋅x+1(x+2)2 =(2+x)(2−x)x+1⋅x+1(x+2)2 =2−xx+2 , 当 x=2−2 时, 原式 =2−2+22−2+2 =4−22 =22−1