题目

在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a(a>0)与x轴交于A,B两点(A在B的左侧). (1) 求抛物线的对称轴及点A,B的坐标; (2) 点C(t,3)是抛物线y=ax2﹣4ax+3a(a>0)上一点,(点C在对称轴的右侧),过点C作x轴的垂线,垂足为点D.①当CD=AD时,求此时抛物线的表达式;②当CD>AD时,求t的取值范围. 答案: 解:当y=0时,ax2﹣4ax+3a=0,即x2﹣4x+3=0,解得x1=1,x2=3,∴A(1,0),B(3,0),抛物线的对称轴为直线x=﹣ −4a2a =2; 解:如图,①∵CD⊥x轴,∴CD=3,OD=t,∴AD=t﹣1,而CD=AD,∴t﹣1=3,解得t=4,∴C(4,3),把C(4,3)代入y=ax2﹣4ax+3a得16a﹣16a+3a=3,解得a=1,∴此时抛物线解析式为y=x2﹣4x+3;②∵CD>AD,∴3>t﹣1,∴t<4,而点C在点B的右侧,∴t>3,∴t的范围为3<t<4.
数学 试题推荐