题目
如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE. (1)求证:DE是半圆⊙O的切线. (2)若∠BAC=30°,DE=2,求AD的长.
答案:【考点】切线的判定. 【分析】(1)连接OD,OE,由AB为圆的直径得到三角形BCD为直角三角形,再由E为斜边BC的中点,得到DE=BE=DC,再由OB=OD,OE为公共边,利用SSS得到三角形OBE与三角形ODE全等,由全等三角形的对应角相等得到DE与OD垂直,即可得证; (2)在直角三角形ABC中,由∠BAC=30°,得到BC为AC的一半,根据BC=2DE求出BC的长,确定出AC的长,再由∠C=60°,DE=EC得到三角形EDC为等边三角形,可得出DC的长,由AC﹣CD即可求出AD的长. 【解答】(1)证明:连接OD,OE,BD, ∵AB为圆O的直径, ∴∠ADB=∠BDC=90°, 在Rt△BDC中,E为斜边BC的中点, ∴DE=BE, 在△OBE和△ODE中, , ∴△OBE≌△ODE(SSS), ∴∠ODE=∠ABC=90°, 则DE为圆O的切线; (2)在Rt△ABC中,∠BAC=30°, ∴BC=AC, ∵BC=2DE=4, ∴AC=8, 又∵∠C=60°,DE=CE, ∴△DEC为等边三角形,即DC=DE=2, 则AD=AC﹣DC=6.